Differential Equation

Laplace Transform

Laplace Transform: Detailed Explanation, Proofs, and Derivations}+

The Laplace transform is an integral transform used to transform a function of time \( f(t) \) into a function of a complex variable \( s \). It is widely used in engineering and physics to solve differential equations and analyze systems.

Definition of the Laplace Transform

The Laplace transform of a function \( f(t) \), defined for \( t \geq 0 \), is given by:

$$ F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t) e^{-st} \, dt $$

where \( s \) is a complex number \( s = \sigma + i\omega \).

The inverse Laplace transform is given by:

$$ f(t) = \mathcal{L}^{-1}\{F(s)\} $$

Properties of the Laplace Transform

1. Linearity: If \( a \) and \( b \) are constants, then

$$ \mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\} $$

2. First Shifting Theorem (Time Shifting): If \( t_0 \) is a constant, then

$$ \mathcal{L}\{f(t – t_0)u(t – t_0)\} = e^{-st_0}F(s) $$

where \( u(t) \) is the Heaviside step function.

3. Second Shifting Theorem (Frequency Shifting): If \( a \) is a constant, then

$$ \mathcal{L}\{e^{at}f(t)\} = F(s – a) $$

4. Scaling: If \( a \neq 0 \) is a constant, then

$$ \mathcal{L}\{f(at)\} = \frac{1}{|a|}F\left(\frac{s}{a}\right) $$

5. Differentiation in the Time Domain:

$$ \mathcal{L}\{f'(t)\} = sF(s) – f(0) $$

$$ \mathcal{L}\{f”(t)\} = s^2F(s) – sf(0) – f'(0) $$

6. Integration in the Time Domain:

$$ \mathcal{L}\{\int_{0}^{t} f(\tau) \, d\tau\} = \frac{F(s)}{s} $$

7. Convolution: If \( f(t) \) and \( g(t) \) are functions, then

$$ \mathcal{L}\{(f * g)(t)\} = F(s)G(s) $$

where \( (f * g)(t) = \int_{0}^{t} f(\tau)g(t – \tau) \, d\tau \) is the convolution of \( f \) and \( g \).

Derivations and Proofs

Derivation of the Laplace Transform of the Derivative

Starting with the definition of the Laplace transform:

$$ \mathcal{L}\{f'(t)\} = \int_{0}^{\infty} f'(t) e^{-st} \, dt $$

Integrating by parts, let \( u = e^{-st} \) and \( dv = f'(t) \, dt \), thus \( du = -se^{-st} \, dt \) and \( v = f(t) \):

$$ \int_{0}^{\infty} f'(t) e^{-st} \, dt = \left[ f(t)e^{-st} \right]_{0}^{\infty} + s\int_{0}^{\infty} f(t) e^{-st} \, dt $$

Assuming \( f(t) \) is of exponential order, the boundary term evaluates to zero as \( t \to \infty \):

$$ = -f(0) + sF(s) $$

Thus,

$$ \mathcal{L}\{f'(t)\} = sF(s) – f(0) $$

Derivation of the Convolution Theorem

The convolution of two functions \( f(t) \) and \( g(t) \) is defined as:

$$ (f * g)(t) = \int_{0}^{t} f(\tau)g(t – \tau) \, d\tau $$

Taking the Laplace transform of both sides:

$$ \mathcal{L}\{(f * g)(t)\} = \int_{0}^{\infty} \left( \int_{0}^{t} f(\tau)g(t – \tau) \, d\tau \right) e^{-st} \, dt $$

Interchanging the order of integration:

$$ = \int_{0}^{\infty} f(\tau) \left( \int_{\tau}^{\infty} g(t – \tau) e^{-st} \, dt \right) d\tau $$

Letting \( u = t – \tau \):

$$ = \int_{0}^{\infty} f(\tau) \left( \int_{0}^{\infty} g(u) e^{-s(u + \tau)} \, du \right) d\tau $$

$$ = \int_{0}^{\infty} f(\tau) e^{-s\tau} \left( \int_{0}^{\infty} g(u) e^{-su} \, du \right) d\tau $$

$$ = F(s)G(s) $$

Thus,

$$ \mathcal{L}\{(f * g)(t)\} = F(s)G(s) $$

ABOUT ME
Voyager
Using AI for all decision-making.