Differential Equation

Lyapunov Exponents

Lyapunov Exponents: Detailed Explanation, Proofs, and Derivations

Lyapunov exponents are a measure of the rates of separation of infinitesimally close trajectories in dynamical systems. They provide insight into the stability and predictability of a system. A positive Lyapunov exponent indicates chaos, where small differences in initial conditions lead to exponential divergence of trajectories.

Definition of Lyapunov Exponents

Consider a dynamical system given by the differential equation

$$ \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), $$

where \( \mathbf{x} \in \mathbb{R}^n \) and \( \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n \). Let \( \mathbf{x}(t) \) be a trajectory of the system with initial condition \( \mathbf{x}(0) = \mathbf{x}_0 \). The Lyapunov exponent \( \lambda \) is defined as

$$ \lambda = \lim_{t \to \infty} \lim_{\| \delta \mathbf{x}(0) \| \to 0} \frac{1}{t} \ln \frac{\| \delta \mathbf{x}(t) \|}{\| \delta \mathbf{x}(0) \|}, $$

where \( \delta \mathbf{x}(t) \) is an infinitesimal perturbation of the trajectory \( \mathbf{x}(t) \).

Properties of Lyapunov Exponents

1. **Invariant Under Coordinate Transformations**: Lyapunov exponents are invariant under smooth coordinate transformations.

2. **Dependence on Initial Conditions**: Lyapunov exponents generally depend on the initial conditions of the system.

3. **Existence of Multiple Exponents**: For an \( n \)-dimensional system, there are \( n \) Lyapunov exponents.

Computation of Lyapunov Exponents

To compute the Lyapunov exponents, consider the Jacobian matrix \( \mathbf{J}(\mathbf{x}) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \). The evolution of a perturbation \( \delta \mathbf{x} \) is given by the variational equation

$$ \dot{\delta \mathbf{x}} = \mathbf{J}(\mathbf{x}) \delta \mathbf{x}. $$

Let \( \mathbf{D}(t) = \frac{\partial \mathbf{x}(t)}{\partial \mathbf{x}(0)} \) be the fundamental matrix solution of the variational equation. The Lyapunov exponents are given by the logarithms of the eigenvalues of the matrix

$$ \lim_{t \to \infty} \left( \mathbf{D}(t)^T \mathbf{D}(t) \right)^{\frac{1}{2t}}. $$

Proof of Invariance Under Smooth Coordinate Transformations

Let \( \mathbf{y} = \mathbf{h}(\mathbf{x}) \) be a smooth coordinate transformation. The dynamical system in the new coordinates is

$$ \dot{\mathbf{y}} = \mathbf{g}(\mathbf{y}) = \mathbf{J}(\mathbf{h}(\mathbf{x})) \mathbf{f}(\mathbf{x}). $$

Let \( \mathbf{D}_\mathbf{y}(t) = \frac{\partial \mathbf{y}(t)}{\partial \mathbf{y}(0)} \). The perturbation in the new coordinates evolves as

$$ \dot{\delta \mathbf{y}} = \mathbf{J}(\mathbf{y}) \delta \mathbf{y}. $$

The Jacobian matrices in the new and original coordinates are related by

$$ \mathbf{J}_\mathbf{y}(\mathbf{y}) = \mathbf{J}(\mathbf{x}) \mathbf{H}(\mathbf{x}), $$

where \( \mathbf{H}(\mathbf{x}) = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \). Therefore,

$$ \dot{\delta \mathbf{y}} = \mathbf{H}(\mathbf{x}) \mathbf{J}(\mathbf{x}) \delta \mathbf{x}. $$

Since the Lyapunov exponents are determined by the eigenvalues of the fundamental matrix, which are invariant under coordinate transformations, the Lyapunov exponents remain unchanged.

Example: Lyapunov Exponents for the Lorenz System

The Lorenz system is a well-known example of a chaotic system. The equations are given by

$$ \dot{x} = \sigma (y – x), $$

$$ \dot{y} = x (\rho – z) – y, $$

$$ \dot{z} = x y – \beta z, $$

where \( \sigma, \rho, \beta \) are parameters. The Jacobian matrix for the Lorenz system is

$$ \mathbf{J} = \begin{pmatrix} -\sigma & \sigma & 0 \\ \rho – z & -1 & -x \\ y & x & -\beta \end{pmatrix}. $$

The Lyapunov exponents can be computed numerically by integrating the variational equations along with the Lorenz equations and applying the method described above.

ABOUT ME
Voyager
Using AI for all decision-making.